Uniformly Stable Solution of a Nonlocal Problem of Coupled System of Differential Equations

نویسنده

  • M. EL-GENDY
چکیده

In this paper we are concerned with a nonlocal problem of a coupled system of differential equations. We study the local existence of the solution and its continuous dependence. The global existence and its uniform stability is being studied. Mathematics subject classification (2010): 34B18, 34B10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled Integral Equations Approach in the Solution of Luikov Equations with Microwave Effect

The objective of this study is to present a mathematical modeling and solution approach for the drying process of spheroidal solids with the application of microwave in capillary porous media based on the Luikov equations, composed of a system of linear and coupled partial differential equations arising from the energy, mass and pressure balances inside the solid matrix. Additionally, the power...

متن کامل

Forced-Vibration Analysis of a Coupled System of SLGSs by Visco- Pasternak Medium Subjected to a Moving Nano-particle

In this study, forced-vibration analysis of a coupled system of single layered graphene sheets (SLGSs) subjected to the moving nano-particle is carried out based on nonlocal elasticity theory of orthotropic plate. Two SLGSs are coupled with elastic medium which is simulated by Pasternak and Visco-Pasternak models. Using Hamilton’s principle, governing differential equations of motion are derive...

متن کامل

Existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0

متن کامل

Periodicity in a System of Differential Equations with Finite Delay

The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.  

متن کامل

Nonlinear Magneto-Nonlocal Vibration Analysis of Coupled Piezoelectric Micro-Plates Reinforced with Agglomerated CNTs

The aim of this article is to analyze nonlinear electro-magneto vibration of a double-piezoelectric composite microplate-system (DPCMPS) pursuant to the nonlocal piezoelasticity theory. The two microplates are assumed to be connected by an enclosing elastic medium, which is simulated by the Pasternak foundation. Both of piezoelectric composite microplates are made of poly-vinylidene fluoride (P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013